Interdependent effects of male and female body size plasticity on mating behaviour of predatory mites

Andreas Walzer, Peter Schausberger

The adaptive canalization hypothesis predicts that traits with low phenotypic plasticity are more fitness relevant, because they have been canalized via strong past selection, than traits with high phenotypic plasticity. Based on differing male body size plasticities of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity), we accordingly hypothesized that small male body size entails higher costs in female choice and male-male competition in P. persimilis than N. californicus. Males of both species are highly polygynous but females differ in the level of polyandry (low level in P. persimilis; medium level in N. californicus). We videotaped the mating interactions in triplets of either P. persimilis or N. californicus, consisting of a virgin female (small or standard-sized) and a small and a standard-sized male. Mating by both small and standard-sized P. persimilis females was biased towards standard-sized males, resulting from the interplay between female preference for standard-sized males and the inferiority of small males in male-male competition. In contrast, mating by N. californicus females was equally balanced between small and standard-sized males. Small N. californicus males were more aggressive ('Napoleon complex') in male-male competition, reducing the likelihood of encounter between the standard-sized male and the female, and thus counterbalancing female preference for standard-sized males. Our results support the hypothesis that male body size is more important to fitness in the low-level polyandrous P. persimilis than in the medium-level polyandrous N. californicus and provide a key example of the implications of sexually selected body size plasticity on mating behaviour. (C) 2014 The Authors. Published on behalf of The Association for the Study of Animal Behaviour by Elsevier Ltd.

External organisation(s)
Universität für Bodenkultur Wien
Animal Behaviour
No. of pages
Publication date
Peer reviewed
Austrian Fields of Science 2012
106047 Animal ecology, 106051 Behavioural biology
Portal url